Treatment of HFC-23 by conversion to environmentally benign chemicals

Han Wenfeng, Wang Shucheng, Liu Wucan, Zhang Jianjun

Zhejiang University of Technology
Zhejiang Research Institute of Chemical Industry
State Key Laboratory of Fluorinated Greenhouse Gases Replacement and Control Treatment
Production of HCFC-22 and HFC-23

\[\text{CHCl}_3 + \text{HF} \rightarrow \text{CHClF}_2 + 2\text{HCl} \]

\[\text{CHClF}_2 + \text{HF} \rightarrow \text{CHF}_3 + \text{HCl} \]

- HFC-23 is the only carbon-containing byproduct
- High purity
- One Man’s Trash, Another Man’s Treasure

1. Introduction

Treatment of HFC-23

<table>
<thead>
<tr>
<th>Process optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Low cost</td>
</tr>
<tr>
<td>× Difficult</td>
</tr>
<tr>
<td>× Formation of HFC-23 unavoidable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Incineration (AM001, CDM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Non-specific</td>
</tr>
<tr>
<td>× High temperature</td>
</tr>
<tr>
<td>× Relatively expensive and diluted HF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conversion technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Minimise C-F bond breakage</td>
</tr>
<tr>
<td>✓ Relatively low energy process</td>
</tr>
<tr>
<td>✓ Produces a useful product</td>
</tr>
</tbody>
</table>

Jianxin Hu et al., Environmental Science & Technology, 2014, 48, 4056−4062
2. Conversion to HCFC-22

Process I: Conversion to HCFC-22

\[\text{CHCl}_3 + \text{CHF}_3 \rightarrow \text{CHClF}_2 + \text{CHCl}_2\text{F} \]

(HFC-23) (HCFC-22) (HCFC-21)

Atmospheric pressure, <400 °C
2. Conversion to HCFC-22

Process I: Conversion to HCFC-22

Industrial production of HCFC-22

Conversion of HFC-23 to HCFC-22
2. Conversion to HCFC-22

Reaction results

Reaction of CHF$_3$ with CHCl$_3$ over catalyst developed by our team

(Atmospheric pressure, CHF$_3$/CHCl$_3$=1, 900 h$^{-1}$)
2. Conversion to HCFC-22

Reaction results

Reaction of CHF$_3$ with CHCl$_3$ over catalyst developed by our team

(Atmospheric pressure, CHF$_3$/CHCl$_3$=1, 900 h$^{-1}$)
2. Conversion to HCFC-22

Exploration of catalysts

Catalysts

- Conversion of CHF$_3$ (%)
 - Cr-based
 - Al-Based
 - Cr-Al based

- Selectivity of CHClF$_2$ (%)
 - Cr-based
 - Al-Based
 - Cr-Al based

Preparation

- Conversion of CHF$_3$ (%)
 - Mixing
 - New method
 - Precipitation

- Selectivity of CHClF$_2$ (%)
 - Mixing
 - New method
 - Precipitation
2. Conversion to HCFC-22

Reaction mechanism

Reaction of CHF$_3$ with CH$_x$Cl$_{4-x}$

Reaction of CHCl$_3$ with fluorinated carbons
3. Conversion to VDF

Process II: Conversion to VDF

\[\text{CH}_4 + \text{CHF}_3 \rightarrow \text{CH}_2=\text{CF}_2 + \text{C}_2\text{F}_4 \]

(HFC-23) (VDF) (TFE)

Atmospheric pressure, 700~900°C
3. Conversion to VDF

Process II : Conversion to VDF

Rate of formation of VDF and TFE during reaction of CHF$_3$ with CH$_4$ (1:1) at 1 bar and with a residence time of 0.5 s

At 900 °C

- Conversion of HFC-23: 77%
- Selectivity to VDF: 27%, yield of 21%

- Byproducts: HF, TFE, CH$_2$F$_2$, C$_3$F$_6$, CH$_2$=CHF, C$_2$H$_2$, CHF$_2$CHF$_2$ and CHF=CF$_2$
- Coke formation

Wenfeng Han, et al. J. Fluorine Chem., 131(7), 2010, 752-761
3. Conversion to VDF

CaBr₂

Halon 1301

O₂

Catalyst

CaBr₂促进作用：

\[
\text{CHF}_3 + \text{CH}_4 \rightarrow \text{CH}_2\text{CF}_2
\]

Conversion of \(\text{CH}_4 \) and formation rate of VDF during Reaction of \(\text{CHF}_3 \) and \(\text{CH}_4 \) (1:1) on \(\text{CaBr}_2 \)

3. Conversion to VDF

CaBr$_2$ | Halon 1301 | O$_2$ | Catalyst

CaBr$_2$ reacts with CHF$_3$ forming CBrF$_3$ selectively.

\[\text{CaBr}_2 + \text{CHF}_3 \rightarrow \text{CBrF}_3 \]
3. Conversion to VDF

| CaBr$_2$ | Halon 1301 | O$_2$ | Catalyst |

Promotion of CBrF$_3$

\[
\text{CHF}_3 + \text{CH}_4 \rightarrow \text{CH}_2\text{CF}_2
\]

At 850 °C, selectivity and yield to VDF jump to 55% and 16%, almost doubled. At 900 °C, selectivity and yield to VDF are 77% and 26.6%.

3. Conversion to VDF

<table>
<thead>
<tr>
<th>CaBr₂</th>
<th>Halon 1301</th>
<th>O₂</th>
<th>Catalyst</th>
</tr>
</thead>
</table>

Promotion of O₂

\[
\text{CHF}_3 + \text{CH}_4 \rightarrow \text{CH}_2\text{CF}_2
\]

- Conversion levels of CHF₃ and CH₄ increase with O₂/CH₄.
- At 800°C, conversion of CH₄ is increased from 4% to 45%, and while that of CHF₃ is increased from 12% to 42%.
- Yield of VDF is increased by 3 times.

Han WF, Greenhouse Gases: Science and Technology, 2017
3. Conversion to VDF

Catalytic reaction

- Transition metal oxides with variable valence possess lattice oxygen. They can function as oxygen buffer, transferring O from O\(_2\) to reaction pool. Hence, they are adopted as the catalyst for oxidative coupling of methane (OCM):

\[
\text{CH}_4 \xrightarrow{O} \text{CH}_3\cdot + \text{H}_2\text{O} \xrightarrow{O} \text{CH}_3\text{CH}_3 + \text{CH}_2=\text{CH}_2
\]

\[
\text{O} \rightarrow \text{CO, CO}_2
\]

- Similarly, catalyst of OCM can be used to co-pyrolysis of CHF\(_3\) and CH\(_4\) forming VDF:

\[
\text{CH}_4 \xrightarrow{O} \text{CH}_3\cdot + \text{CF}_2 \xrightarrow{O} \text{CF}_2\cdot \xrightarrow{O} \text{VDF} + \text{H}
\]

\[
\text{O} \rightarrow \text{CO, CO}_2
\]
3. Conversion to VDF

- Conversions over CeO$_2$ are improved significantly.

- At 860 °C, conversion of CHF$_3$ is higher than 90%, and selectivity of VDF is 83%.

- With further investigation of catalyst, reaction temperature is expected to be reduced.

Effect of CeO$_2$ on the co-pyrolysis of CH$_4$ and CHF$_3$ in the presence of O$_2$.

Han WF, Journal of hazardous materials, submitted
3. Conversion to VDF

CaBr\textsubscript{2} | Halon 1301 | O\textsubscript{2} | Catalyst

OCM

\[
\begin{align*}
&\text{CHF}_3 \xrightarrow{\text{La}_2\text{O}_3} \text{LaOF} \xrightarrow{\text{O}_2} \text{LaOF} \cdot \text{O}_2 \xrightarrow{\text{CH}_4} \text{CH}_3 \\
&H \xrightarrow{\text{CH}_4} \text{CH}_3 \\
&\text{CH}_2=\text{CF}_2 \ (\text{VDF})
\end{align*}
\]

Co-pyrolysis

\[
\begin{align*}
&\text{CHF}_3 \xrightarrow{\text{HF}} : \text{CF}_2 \\
&\text{H} \xrightarrow{\text{CH}_4} \text{CH}_3 \\
&\text{CH}_2=\text{CF}_2 \ (\text{VDF})
\end{align*}
\]

Technical indicators
- At 860 °C and 1 bar, over catalysts,
- Conversion of CHF\textsubscript{3}: 80%
- Selectivity to VDF: 83%

Economic indicators
- Conversion cost: 1,700 US $/ton
- Value of product: 2,700 US $/ton
- Profit: 1,000 US $/ton
Process III: Conversion to TFE and HFP

\[\text{CHF}_3 \rightarrow \text{CF}_2=\text{CF}_2 + \text{CF}_2=\text{CFCF}_3 + 5\text{HF} \]

(HFC-23) (TFE) (HFP)

Atmospheric pressure, 750~900°C
4. Conversion to TFE and HFP

Generally, HCFC-22 is used for the production of TFE and HFP via pyrolysis. Similarly, HFC-23 can be applied.

Reaction:

\[
\begin{align*}
\text{CHF}_3 & \rightarrow \text{CF}_2 + \text{HF} \\
\text{CHClF}_2 & \rightarrow \text{CF}_2 + \text{HCl}
\end{align*}
\]

Products:

\[
\begin{align*}
\text{CF}_2 + \text{CF}_2 & \rightarrow \text{C}_2\text{F}_4 \quad ; \\
\text{CF}_2 + \text{CF}_2 + \text{CF}_2 & \rightarrow \text{C}_3\text{F}_6
\end{align*}
\]

- (TFE)
- (HFP)

Reaction rate constant:

\[
\begin{align*}
\text{R23: } & \quad k = 5.2 \times 10^{13} \ [\text{s}^{-1}] \ e^{-295 \pm 46 \ [\text{kJ/mol}] / RT} \\
\text{R22: } & \quad k = 3.2 \times 10^{12} \ [\text{s}^{-1}] \ e^{-220 \ [\text{kJ/mol}] / RT}
\end{align*}
\]

- HFC-23, 1 bar, >750 °C;
- HCFC-22, 1 bar, 600-900 °C
- HCFC-22 pyrolysis plant can adapt to HFC-23 pyrolysis
4. Conversion to TFE and HFP

Pyrolysis of HFC-23

- At 860 °C, TFE yield (Max.):
 - TFE: 31%
 - HFP: 16%

- Selectivity of HFP increases with temperature.
 - Yield at 900 °C:
 - TFE: 17%
 - HFP: 41%

- Coke at high temperatures:
 - At 900 °C
 - Carbon balance: 75%

4. Conversion to TFE and HFP

KF/AC catalyst enhances the conversion of CHF$_3$, yield of TFE and HFP significantly.

<table>
<thead>
<tr>
<th>Entry</th>
<th>CHF$_3$ conversion, %</th>
<th>Selectivity, %c</th>
<th>Yield, %c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-catalytica</td>
<td>15.1</td>
<td>55.9</td>
<td>8.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9.66</td>
</tr>
<tr>
<td>Catalyticb</td>
<td>61.1</td>
<td>33.3</td>
<td>23.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>34.7</td>
</tr>
</tbody>
</table>

5. Summary

I. Conversion to HCFC-22
- Reaction temperature: $< 400 \, ^\circ C$
- Conversion of CHF$_3$: $> 30\%$
- Selectivity of HCFC-21 and HCFC-22: $> 95\%$
- Treatment profit: ≥ 450 USD/ton

II. Conversion to VDF
- Reaction temperature: 700-900$^\circ$C
- Conversion of CHF$_3$: 80% (860 $^\circ$C)
- Selectivity of VDF: $> 83\%$ (860 $^\circ$C)
- Treatment profit: $\geq 1,000$ USD/ton

III. Conversion to TFE and HFP
- Reaction temperature: 750-900$^\circ$C
- Conversion of CHF$_3$: 60% (800 $^\circ$C)
- Selectivity of TFE: $> 33\%$ (800 $^\circ$C)
- Selectivity of HFP: $> 23\%$ (800 $^\circ$C)
Zhejiang University of Technology

Zhejiang Research Institute of Chemical Industry
State Key Laboratory of Fluorinated Greenhouse Gases
Thanks for your attention!

hanwf@zjut.edu.cn (Wenfeng Han)
zhangjianjun@sinochem.com (Jianjun Zhang)